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The paper presents alternative forms of partial differential equations of the parabolic type used 
in chemical engineering for description of heat and mass transfer. It points at the substantial 
difference between the classic form of the equations, following from the differential balances 
of mass and enthalpy, and the form following from the concept of stochastic motion of particles 
of mass or energy component. Examples are presented of the processes that may be described 
by the latter method. The paper also reviews the cases when the two approaches become identical. 

Mathematical theory of diffusion processes, i.e. random processes continuous with 
respect to time and spatial coordinates (see e.g. refs1 •2) is successfully applied in 
various parts of natural sciences1 •3 •4 • In chemical engineering this approach has 
been used for instance in description of processes in solid-liquid systemsS - 9 , gas
-liquid systems6 •10, dispergation and coalescence of immiscible liquidsll ,12, disper
gation 13 and blending14 of solids. Another region is the application of these processes 
to continuous mixers1S - 18 and reactors I9 - 23 . Certain results, together with the 
explanation of the mathematical apparatus, have been treated in chemical engineering 
monographs24 •2s • 

Partial differential equations, generally used in chemical engineering for descrip
tion of mass and energy transfer (see e.g. refs26 ,27), belong, from the standpoint 
of terminology of random processes, into the class of so-called diffusion equations, 
often referred to as the Kolmogorov or Fokker-Planck equations (see e.g. refs2 - 4). 

In any case, the attempts for a mathematical description of the Brownian motion 
and the concept of the mechanism of molecular motion just led to elaboration of the 
above-mentioned mathematical apparatus (see e.g. the introductory chapter of the 
work of Ito and MCKean28). 

It turns out, however, that in the general case the classic form of the transport 
equations and the Kolmogorov diffusional equations is not identical as there are 
differences in the notation ofthe diffusion terms. In order to express this disagreement 
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1182 Kudrna: 

as clearly as possible, let us write first the differential mass balance of a component 
and the enthalpy balance with some simplifications. The Kolmogorov equation and 
the relationships leading to it shall be consistently treated as relations permiting 
description of the probability characteristic of the kinematics of motion of a single 
particle of the component considered in the three-dimensional Euclid space. 

THEORETICAL 

Formulation of the Mass and Enthalpy Balance 

We shall consider separately the transport of the mass component and heat in the 
moving and incompressible fluid, i.e. we shall consider the temperature or concentra
tion changes have no significant effect on the density of the fluid (or on the density 
of the fluid and the diffusing component). In both equations there will be no source 
terms either. In the mass balance we shall consider an isothermal process, neglect 
the effect of external forces, thermodiffusion and pressure gradients. In the energy 
balance we shall consider as insignificant the terms describing changes of kinetic and 
potential energy of the fluid compared to the changes of its enthalpy. Apart from 
that we shall consider that the specific heat capac:ty of the fluid does not significantly 
depend on its temperature. 

Based on the summarized assumptions one can write the differential balance of the 
component A in the form (see e.g. refs26 •27) 

(1) 

where (lA designates partial density of the mass component, t is time and v is the 
velocity of the fluid which is generally a vector function of time and spatial coordi
nates; it is assumed that this is a known function. The symbol V designates the Ha
milton differential operator in the Euclid three-dimensional space and iA is a diffu
sional flux determined by the first Fickian law 

(2) 

The diffusivity is generally regarded to be a known scalar function of time, spatial 
coordinates and the concentration of component A. The diffusional flux characterises 
the relative motion of the component in the mixture; the sum of the fluxes of all 
components making up the considered fluid must therefore vanish. The sum of 
partial densities of all components equals the density of the incompressible fluid; 
summation of Eq. (1) over all components yields the familiar relationship 

L [O{!A + V. (V{!A) + V . iAJ = O{! + V . (V{!) = V . v = O. (3) 
A at at 
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Stochastic Diffusion Processes 1183 

stating that the divergence of the velocity of an incompressible fluid equals zero. 

Upon considering Eqs (2) and (3) the differential mass balance in the "classic" 
form reads 

(4) 

partial density (2A = (JA(X, t) is the solution of this equation for the given initial 
and boundary conditions. 

Analogously one can wirte the differential enthalpy balance 

(5) 

where T designates temperature, cp is the specific heat capacity of the fluid and q 
is the heat flux determined by the Fourier law 

q = -A VT (6) 

while the thermal conductivity is generally taken to be a scalar function of coordi
nates, time and temperature. After substituting from Eqs (6) and (3) into Eq. (5) 
and upon considering the assumption of constant density and heat capacity one 
obtains the "classic" equation for the transport of heat 

aT/at + v. VT - V. (a VT) = 0, (7) 

where a = A/(Jcp is the thermal diffusivity. Solution of the equation T = T(x, t) is 
the temperature of an incompressible fluid. 

Equations (4) and (7) have been used for description of heat and mass transfer 
in a turbulent incompressible fluid (see e.g. ref. 29); its velocity in this case is taken 
to be a random vector function of time and spatial coordinates. From here it follows 
that also the solution of these equations - the partial density of the component 
or temperature - become also random scalar functions of these arguments. 

The most frequent modification of Eq. (4) is then the method of averaging, i.e. 
calculation of expected values, of individual quantities appearing in this equation, i.e. 

where the brackets indicate mean values; the apostrophes the fluctuations of the 
correspondtng quantities around their means, i.e. for instance 

(9) 
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Mutual correlation of random velocity and the concentration of the component is 
usually taken proportional to the gradient of the mean concentration29• 

(10) 

where the coefficient of proportionality OT-generally a function of spatial coordinates 
and time - is usually termed turbulent diffusivity and is generally a second order 
tensor. Superposition of molecular and turbulent diffusivity D = DT + ID permits 
finally Eq. (8) to be written in the form 

(11) 

The coefficient D shall be termed the tensor of diffuson and shall be regarded as 
a symmetric one. 

An analogous procedure yields the relationship for the transport of heat in the 
turbulent medium. 

a(T)/at + (v) . 'V(T) - 'V. (A. 'V(T») = 0, (12) 

where A shall be regarded as a symmetric tensor of temperature diffusivity. In the 
following text we shall omit brackets designating the averaging procedure. 

The Kolmogorov Diffusion Equation 

We shall present now the method applicated in the theory of random processes to 
derive the relationship of analogous type. Let us consider now that an elementary 
particle (molecule) of the component A moves at random in a fluid and its motion 
is given by the position vector X(t), the latter being a random function of time. 
Let us assume that for this process there exists a transition probability density in the 
form 

( 13) 

where t > t and xi(i = 1,2, 3) are the coordinates of the vector x. This function 
characterises the probability of the position of a molecule A at the time instant t 

under the condition that in some of the preceding instant T the molecule was at 
the point determined by the position vector y. 
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Stochastic Diffusion Processes 1185 

If the process under consideration is a Markov one, i.e. such that it depends on the 
initial conditions only and not on the transient states, one can write the Chapman
-Kolmogorov equation (see e.g. refs2,4) 

j(x; tly; -r) = fj(x; tlz; s)j(z; slY; ·t') dz [t> s> or], (14) 

excluding the effect of the position of the particle at the transient state s on the 
probability of its localisation at the instant t. 

For a diffusional Markov process there exists another condition determining the 
continuity of the process 

lim ~ f j(x; t + atly; t) dx = 0, 
A, .... 0 at 1"-71>& 

(15) 

i.e. in this case the trajectory of the molecule of the component and further expressions 
for the first two infinitesimal moments of the process 

a(y, t) = lim ~ r (x - y)j(x; t + atly; t) dx (16) 
A' .... O at J 17-"1 ~& 

8(y, t) = lim ~ f (x - y)2 j(x; t + atly; t) dx, (17) 
A/ .... O at 17-"1~' 

while the vector a is usually termed the drift velocity; the matrix of the second 
order tensor 8 the diffusion matrix. From the definition it follows that this matrix 
is symmetric and positively definite. 

From the validity of Eqs (14) -(17) there follows (see e.g. refs2,4) the Kolmogorov 
forward diffusion equation (in physical applications usually termed the Fokker
-Planck equation) 

aj/at + V . (aj) - 1/2 V . (V . (8j)) = o. (18) 

In the literature unusual sequence of differential operators has been made possible 
here by the fact that the motion of the particle takes place in the three-dimensional 
Euclid space and that the tensor 8 is symmetric. 

In view of the fact that Eq. (18) is linear with respect to the function j(x; tly; or), 
an unconditional probability density p(x; t) is another solution of this equation for 
given initial probability density p(y; 0) 

p(x; t) = fj(x; tlY; 0) p(y; 0) dy . (19) 
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A Comparison of the Classic Transport Equations with the 
Kolmogorov Equation 

Kudrna: 

In order to simplify the situation we shall assume in this paragraph that the processes 
under consideration take place in a bounded part of the three-dimensional space; 
the boundaries of this subspace are isolated with respect to mass and energy transfer. 
Further we compare indiviudal terms in Eq. (18), considering also Eq. (19), and in 
Eqs (11) and (12); the relationship between them shall be written in the form of the 
following postulates: 

1. The probability density p(x; t), characterising the position of an individual 
molecule of the component A is directly proportional to the partial density of this 
component; the coefficient of proportionality is the total mass of component A 
In the isolated subspace under consideration. 

(20) 

where N A designates the total number of particles of component A and mA the mass 
of each of them. The above relationship l).olds the better the greater is the number 
of particles of the component A occupying the subspace considered, as follows 
from one of the oldest axioms of the classic theory of probability - the Bernoulli 
law of the large numbers. 

Upon taking for the elementary event the fact that a single particle of the com
ponent A appears at a time instant t in a very small subspace of volume L\V with 
the center at the point x, then we may write for every e > 0, (see e.g. ref. 30) the 
relationship 

lim p{lnit, L\V) _. f p(x; t) dxl ~ e} -+ 0, 
N ....... oo NA hoY 

(21) 

where nA designates the number of occurences of event as the number of mutually 
independently moving particles of the component satisfying the condition of the 
elementary event. The written difference converges to zero with the increasing 
number of particles. Upon multiplying both terms of the difference by the overall 
mass M A and upon dividing by a very small value /l V one obtains Eq. (20). A similar 
relationship is valid for the expected value of the concentration of the component. 

It has to be noted through that the concentration of the component cannot be too 
high in order to fullfil the requirement of independence of the events. This condition 
may be interpretted also in such a way that the motion of individual particles of the 
component is conditioned only by the motion of the liquid that caries it and that 
mutual interactions between particles of the component A are unlikely. 
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2. The drift velocity of particles of the component A equals the velocity of the 
fluid, or, in a turbulent medium, equals the expected value of this velocity. 

a(x, t) = vex, t) = <vex, t» . (22) 

The drift velocity, according to the definition (16), is the ratio of the expected 
value of the infinitesimal shift of the particle and the infinitesimal time interval. 
It is assumed at the same time that we may neglect the effect of external forces acting 
on the particle as well as the effect of inertia forces. On the basis of considerations 
analogous to those in the preceding paragraph we may state that for the description 
of the particle a kinematic concept will suffice and that the averaged motion of the 
particle is solely determined by the motion of the liquid surrounding the particle. 

3. The physical meaning of the tensor Sin Eq. (17) considered for a large amount 
of particles of the component A is identical with the physical meaning of the diffusion 
tensor in Eq. (11). Tensor S characterises intensity with which the variance of the 
position vector alters, i.e. for a large number of particles the intensity of their scatter 
in the fluid that carries them. From the formulation of the axiom it does not follow 
that in the general case the following identity is valid 

D(x, t) = Sex, t)/2 . (23) 

Conditions under which this is possible shall be subject to the following considera
tions. Apart from that it is obvious that this function, characterising the relative 
motion of the component A in the fluid, is conditioned e.g. by the form of the par
ticles of this component and the fluid. The form of the function D or S is therefore 
genera]]y different for different species. 

4. The probability density p(x, t) is directly proportional to the enthalpy of the 
fluid at the point x and the time instant t; the coefficient of proportionality is the 
overa]] enthalpy H in the isolated subspace. 

Cp{!T(x, t) = H p(x, t) . (24) 

Under the above assumptions regarding the independence of the density and the 
specific heat capacity of the fluid on the temperature we may write that also the 
temperature is directly proportional to the probability density p(x; t). While, how
ever, the random vector X(t) in the formulation of the first postulate has clearly 
the meaning of the instantaneous position of the mass particle in space, it is necessary 
in this case to consider a random motion of a certain amount of energy, on the one 
hand, carried by individual particles, and, on the other hand, exchanged among the 
particles. 
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S. The drift velocity of this energy quantum equals the velocity of the fluid or its 
expected value. Equation (22) therefore also holds. 

6. Tensor 8 in Eq. (17) is analogous to the tensor of thermal diffusivity A in Eq. 
(12). On the basis of the considerations in point 3 it is apparent that the form of the 
function A depends generally on the properties of the flowing fluid. Here again the 
following identity is generally not valid 

A(x, t) = 8(x, t)/2 . (25) 

In the following paragraph we shaH first discuss the differences between these tensors 
and also between tensors 0 and 8. 

The Differences in Diffusional Terms of Differential Equations 

From the considerations and relationships in the previous paragraph it follows that 
Eq. (18) is first integrated as in Eq. (19) and multiplied by the constant MA : thus we 
obtain, considering still Eq. (22), the following 

(26) 

Kolmogorov differential equation for the partial density of the component A. Upon 
multiplying by the constant H/cp{! one obtains an analogous relationship for the 
temperature of the fluid as 

aT/at + v . (aT) - 1/2 V . (V . (8T») = 0 . (27) 

A comparison of these two relationships with Eqs (11) and (12) shows the difference 
in the notation of the second (convective) and the third (diffusion) term. 

It is apparent that the expressions V . (a{!A) and V . (aT) correspond to analogous 
expressions for a compressible fluid (see e.g. ref. 27) and in this more general case 
thus the second terms of all mentioned equations are identical. From the standpoint 
of the description of convective transport of mass and energy thus there is not a dif
ference between the Kolmogorov and the differential balances. 

The condition V . a = 0 in Eqs (26) and (27) apparently poses additional limita
tions on the form of the function f in Eqs (15) - (17). This condition is fulfilled, for 
instance, if the function f is invariant with respect to the shift. We shall now examine 
differences in the last (i.e. diffusional) terms of these equations. 

Primarily it is the difference in the location of the differential operator; in the 
Kolmogorov equation elements of the diffusional matrix are differentiated twice. 
Apart from that the formulation of the differential balances does not rule out the 
dependence of the diffusion tensor on the concentration of the component and the 
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tensor of thermal diffusivity on the temperature (see e.g. ref.27). 

o = D(x, t, (JA(X, t»; A = A(x, t, T(x, t» . (28) 

The balances equations thus become nonlinear in contrast to the Kolmogorov 
equation (18), which - as follows from the derivation (see e.g. ref. 4 ) - is always 
linear with respect to the probability density. 

In the general case thus the compared pairs of equations (11) and (26) and further 
(12) and (27) are not identical and cannot describe the identical process. Their 
applicability apparently depends on the fact how accurately the particular equation 
is capable of expressing the real process. In chemical engineering the preference 
in general is given to the differential balances as they can (in contrast to the Kolmo
gorov equation) express also the well known fact that at steady state the temperature 
and concentration in an isolated system are constants. 

There exist, however, in chemical engineering also certain processes which, on the 
contrary, can be successfully described provided that the diffusional terms are writ
ten in the form given in Eqs (26) or (27). King!?, for instance, introduced into the 
chemical engineering literature the following formulation of the Kolmogorov equa
tion 

op D -- + - [(fJ + y - (Xx) p] 
Dt ox 

el 2 

ox 2 (yxp) = 0, (29) 

where (X, fJ, and yare constants. Solution of this equation in the steady state is the 
probability density, the so-called gamma-distribution, which is used for description 
of the distribution of the residence time of the fluid in the continuous flow equip
ment J 1. This description was successfully used also for modelling of an industrial 
equipment - the f1oculation chamber32 . 

The two-dimensional Kolmogorov equation with the scalar diffusion coefficient as 
a function of position permitted one to express the existence of the local extremes 
of the concentration of solids that had been experimentally found in a batch mixed 
by a mechanical rotational impeller. Use of the "classic" differential balance did 
not permit description of these extremes8 . 

A very illustrative example in this sense is the description of the function of the 
horizontal drum mixer for blending solid particles. Mixing of particles of the same 
size differing in color leads to their axial mixing in accord with the one dimensional 
diffusion equation33 . 34 oc/Dt = D02C/Dx 2 , in which the diffusion coefficient is a con
stant and c designates concentration of one of the color components. Tn case, how
ever. that the particle differ as to their dimensions, one can observe, in contrast, 
their axial (and eventually also radial) seggregation. As noted by Fan and Shin14, 

this experimental observation can be in principle described by the Kolmogorov 
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equation in the form oc/ot = o2(D(x) c)/ox2. The classic balance oc/ot = o(D(x) oc)/ 
jox 2 in this case fails as it leads to equalization of concentration of particles of one 
dimension. The proposed application of the Kolmogorov equation was successfully 
realized 35 for interpretation of experimental data36 . 

The classic formulation of the differential equations (11) and (12) thus cannot be 
in all cases preferred and the chemical engineering monographs and textbooks 
dealing with the study of mass and energy balances in general terms should also 
deal with alternative methods of formulation of diffusion equation (26) and (27). 

In the general case these two approaches cannot be unified and in ambiguous cases 
one has to consider, or eventually experimentally verify, the suitability of the parti
cular expression. In the following paragraph we sha11 attempt to review the cases 
when it is possible to transform one expression to the other which eliminates the 
necessity of choosing between them. 

The Cases of Possible Unification of the Two Types of Equations 

The "non-linear" form of the Kolmogorov equation. The method outlined in one 
of the preceding paragraphs led to the Kolmogorov equation (18) which represents 
a linear relationship with respect to the probability density. The diffusion tensor 8 
in this equation thus cannot be written in the form analogous to Eqs (28). In this 
paragraph we shall attempt to outline the concept which would nevertheless lead 
to the diffusion tensor as an explicit function of the probability density. 

In the previous paragraph we have considered that the motion of particles of the 
component A is such that mutual interaction is negligible. Now we sha11 assume 
that at higher concentrations of the component A this concept no longer holds. Let us 
admit though that even this higher concentration does not affect significantly the 
flow of the incompressible fluid. Further we shall confine this problem by the as
sumption usual in the statistical mechanics that mutual interactions of the particles 
may be approximated by summation of the interactions between pairs of particles 
and that these interactions are symmetric (see e.g. ref. 37). 

We shall therefore write the Kolmogorov forward equation for simultaneous 
motion of a pair of molecules of the component A, designated i and j 

o~: + Vi' (a(xi, t)fz) + Vj . (a(xj, t)f2) - 1/2 Vi' (Vi' BZ(xi, Xj' t)f2) -

1/2 Vi' (Vj . C(Xi' Xj' t)f2) - 1/2 Vj . (Vi' CT(Xi' Xj' t)f2) -

- 1/2 Vj . (Vj . B2 (xj, Xi' t)f2) = 0, (30) 

where Vi and Vj designate differential operators with respect to position coordinates 
of particles i and j. Physical concept of the velocity of fluid unaffected by the con-

Collection Czechoslovak Chern. Cornrnun. (Vol. 53) (1988) 



Stochastic Diffusion Processes 1191 

centration of the component A can be here reformulated in the sense that the velocity 
of the drift is given by summation of identical vector functions of position of indivi
dual particles, or, explicitely, also time. The diffusion terms express interactions 
between particles respecting their symmetry. 

The solution is the "double" conditional probability density 12 for the position 
of both particles at the time instant t, for their given initial positions and may be 
defined analogously as the function 1 in Eq. (13). Similarly as in Eq. (19) one can 
also find an unconditional probability density characterising simultaneous positions 
of particles i and j: 

(31) 

Finally integration with respect to the instantaneous position of one of the par
ticles leads to the probability density function for the second particle, that is for 
instance to 

(32) 

It is apparent that in view of the symmetry considered the probability density for the 
other of the particles shall be identical. It is further obvious that this function is iden
tical with the function P in Eq. (19) only provided that the particles move indepen
dently. 

The last function is a solution of Eq. (30) after integrations indicated in Eqs (31) 
and (32). At the same time it is assumed that the sequence of the integration and 
derivation can be interchanged and that the coefficients in the equations are of such 
a form that the last three terms assume after these operations a zero value: 

The expression in the brackets may te regarded to be the definition of the diffusion 
tensor for the motion of a single particle which, however, characterises also the 
effect of interactions on part of the second particle. It is, however, apparent that with 
this approach the coefficient of diffusion is generally only a function of time and 
position vector Xi' According to the above considerations the net interaction would 
be expressed by the summation of all diffusion coefficients characterising the effect 
of other particles on the i-th particle. 

A particular case leading to an explicit dependence of the diffusion tensor on the 
probability density PI may be formulated on the following assumptions: 1) The 
diffusion coefficient characterising the interaction is a function of the distance 
between both particles and indepenent of the position of the latter. 2) This depen
dence is a deterministic function of the probability density characterising position 
of the particle under consideration. 
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The introduced assumptions are very stringent and may be approximately ful
filled only if we consider the interaction between particles to be significant only 
within a limited distance between them (narrow potential "pit" expressed, for in
stance, by the Lennard-Jones potentiaI37). This distance decreases with the increased 
number of particles of the component A in the mixture. 

The expression in the bracket in the last term of Eq. (33) could be, under these 
assumptions, written in the following form 

J82(xj, Xj' t) P2(Xi , Xj; t) dXj!PI(Xi; t) = 

= J8r (l r l, Xi' t) P2(Xi, Xi + r; t) dr!PI(Xi; t) [r == Xj - xJ . (34) 

In the first coefficient 8 r of the expression behind the integral we have used the first 
of the assumptions. The vector r characterises the oriented distance between particles i 
and j, symbol Irl denotes its magnitude. The components of the vector r may be 
further expressed by means of spherical coordinates (see e.g. ree S) and the 
expression may be integrated with respect to two angular coordinates. (The coeffi
cient 8 r is not a function of these coordinates). After this operation the right hand 
side of Eq. (34) changes to 

(35) 

The ratio r2 Prj PI expresses the conditional probability density characterising the 
distance between the i-th and the j-th particle under the condition that the former 
appears at the point Xi' According to the second of the introduced assumptions 
this function may be approximately expressed by r2Pr!PI :::::: br(r - P(PI»' where 
br is the Dirac function. In view of the dimensionality of the probability density 
the P function may be further approximated by P(PI) ~ p- I / 3 • Upon substituting 
these expressions into Eq. (35) and integration one finally obtains an expression 
for the diffusion coefficient which is an explicit function of the probability density 
Pl' The diffusion tensor 8 r thus has in this case a form analogous to the expressions 
(28). From the above considerations it further follows that for greater distances 
between particles and hence for lower densitites of the probability PI (or for lower 
concentrations of particles) this dependence vanishes and the tensor takes the form 
written in Eq. (17). 

Cases of Identity of Diffusion Coefficients. In this paragraph we shall review the 
cases when the diffusion coefficients - scalars or tensors - may be written in the 
differential balances and the Kolmogorov equation in such a way as to achieve the 
same position of the d;fferential operators in these terms. Let us note first that from 
this standpoint it is not important whether the diffusion coefficients are explicit 
functions of time; for simplicity we shall consider that these coefficients are time 
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independent, i.e. we deal with a diffusion homogeneous in time. As far as the depen
dence on the spatial coordinates is concerned we shall distinguish these cases: 

1. Homogeneous and isotropic diffusion. It is the simplest and in chemical engi
neering most often used way of describing mass and heat transfer. This is the case 
when the diffusion coefficient is a scalar constant which may be taken in front of 
the differentiation sign in Eqs (11), (12), (26), and (27) so that all relations are iden
tical. In the monographs dealing with random Markov processes (see e.g. ref. l ) 

this case is presented as an example of the agreement of results of the theory of 
random diffusion processes with transport equations. 

2. Homogeneous and anisotropic diffusion. In this case the diffusivity, or the 
thermal diffusivity, are second order tensors while individual components of the 
tensor are constants. In the expressions mentioned in the preceding paragraph 
one may also take these coefficients in front of the differential operators so that for 
instance Eq. (12) and (27) may be written in the form 

aT/at + v. VT - A: V 2 T = 0, (36) 

where the colon designates the double scalar product and V2 designates the dyadic 
product of two differential operators. 

Expressions of this type have been used in chemical engineering applications for 
description of heat conduction in solid anisotropic media (see e.g. ref. 39) where, 
of course, the velocity v equals zero. 

3. Inhomogeneous isotropic diffusion. The diffusion coefficient is a scalar, yet 
a function of spatial coordinates (i.e. for instance D(x) = ID(x)). In this case Eqs 
(11), (12), (26), and (27) cannot be generally transformed to a unified form. The 
literature 3 ,24 usually presents an approach based on the derivation of the diffusion 
term and assigning the "excess" expression to the convective term: 

The third term is called "spurious flow". However, as long as the velocity of the drift 
is identified with the velocity of the fluid this operation does not usually help. It 
leads, for instance, to a nonuniform steady state spatial distribution of concentration 
or temperature which is immediately apparent in the case of a quiescent fluid. 

One can, however, point at a class of processes where a similar approach is suc
cessful. It is incases when the diffusion coefficient is only a function of concentration, 
or the thermal diffusivity only a function of temperature and thus only an implicit 
function of position and time: 

(38) 
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Using the rules for differentiation of composed functions we obtain V D((lA(X, t») = 
= (aD/a(lA) V(lA which modifies Eq. (37) to the following form 

(39) 

For the enthalpy balance we may w.rite analogously 

aT/at + V . (vT) - V . ((Taa/aT + a) VT) = o. (40) 

Expressions in the inner parenthesses of the third terms of both equations may be 
regarded as "corrected" diffusivity or thermal diffusivity. 

Both these cases are frequently used in the chemical engineering practice39 .40 , 

while we have at our disposal - primarily for the coefficient of thermal diffusivity 
- extensive amount of experimental data. 

4. Inhomogeneous and anisotropic diffusion. The diffusion coefficient is a second 
order tensor and individual elements of its matrices are functions of spatial co
ordinates D = D(x). Transition to the "clasic" form can be realized as in the pre
vious case, i.e. when the diffusion tensor is a function of the concentration of the 
component only or if the tensor of thermal diffusivity is a function of temperature 
only D = D((lA); A = A(T). 

In this case, however, one can point at another possibility which is, in a way, 
analogous to the statement of zero divergence of the velocity in an incompressible 
fluid. In case of a uniform scatter of the component A in the incompressible fluid 
its partial density is a constant. In order to satisfy this condition we must have 
V . V . D = 0, i.e. the double divergence of the tensor of diffusion must vanish. 
A more stringent requirement may be the condition of zero divergence of the tensor 
V . D = 0, i.e. a vector whose components all vanish. Analogous consideration ap
parently holds also for the tensor of thermal diffusivity. This approach, however, 
is not being aplied in the chemical engineering applications. 

CONCLUSIONS 

From the considerations, assumptions and relationships written in this paper one 
can draw the following conclusions: 

1. A random process has been described, represented by the position vector of 
a particle moving in a three-dimensional Euclid space. Assuming this point to be 
a diffusional Markov process corresponding Kolmogorov forward differential equa
tion, Eq. (18), has been written, whose solution is the probability density charac
terising the process. 

2. Assumptions have been summarised under which individual terms in this 
equation may be identified with the expressions appearing in the differential balance 
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of mass component (Eq. (4)) or enthalpy (Eq. (7)) in the same space. Namely: a) 
the proportionality between the above considered probability density and the partial 
density of the mass component and the proportionality between the same probability 
density and temperature, b) the identity between the drift velocity and the velocity 
of the fluid in the balance equations. 

3. Under these assumptions in the general case the diffusion terms in the Kolmo
gorov equation and the differential balances differ. It is so when the diffusion coeffi
cients are functions of spatial coordinates. It has been pointed at the fact that certain 
chemical engineering processes exist leading to a nonuniform distribution of the 
concentration of the component. In these cases the classic diffusion equation fails 
and one has to resort to a more general notation of the diffusion term, given e.g. in 
Eq. (18). 

4. It has been shown that for a large class of chemical engineering processes, 
when the diffusion coefficient depends on concentration of the component (or the 
coefficient of thermal conductivity on temperature) and hence it is only an implicit 
function of spatial coordinates, the diffusion coefficient in Eq. (18) may be trans
formed to a form corresponding to analogous expressions in Eqs (4) and (7). 

LIST OF SYMBOLS 

A tensor of thermal diffusivity, m1 S-1 
a thermal diffusivity, m1 S-1 
G drift velocity, m S-1 
B diffusion tensor, m1 s-1 
C tensor characterizing interparticle interactions, m1 s - 1 
t· concentration of particles 
cp specific heat of fluid, J kg -1 K - 1 
D diffusivity, m1 s - 1 
D diffusivity (tensor), m1 s-1 
f conditional probability density, m - 3 

fi "double" conditional probability density, m - 6 

H total enthalpy of fluid, J 

identity tensor 
j diffusional flux, kg m - 1 S - 1 
M A total mass of component A, kg 
m A mass of particle of component A, kg 
N A total number of particles of component A 
p probability density (unconditional), m - 3 

P2 "double" unconditional probability density, m - 6 

q heat flux, W m- 1 

,. oriented distance between particles, m 
T tempepature, K 

time, s 
y velocity of fluid, m s - 1 
X position vector (random function of time), m 
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1196 Kudrna: 

x position vector (variable distribution), m 
y position vector at the initial time instant (variable distribution), m 
A. thermal conductivity, W m - 1 K - 1 

(} density of fluid, kg m - 3 

(} A partial density (concentration) of component A, kg m - 3 

1: time, s 

Subscripts 

A related to component A 
related to i-th particle 
related to j-th particle 

r related to interparticle distance 
T related to turbulent regime 
1 related to a single particle 
2 related to a pair of particles 

REFERENCES 

1. Bharucha-Reid A. T.: Elements of the Theory of Markov Processes and Their Applications 
(Russian translation). Nauka, Moscow 1969. 

2. Gichman I. I., Skorokhod A. V.: Stokhasticheskie differencialnye uravneniya. Naukova 
dumka, Kiev 1968. 

3. van Kampen N. G.: Stochastic Processes in Physics and Chemistry. North Holland, Amster
dam 198f. 

4. Gardiner C. W.: Handbook of Stochastic Methods for Physics and Natural Sciences (Russian 
translation). Mir, Moscow 1986. 

5. Deitsch V. G., Stalsky V. V.: Teor. Osn. Khim. Tekhnnl. 18, 66 (1984). 
6. Kutiepov A. M.: Teor. Osn. Khim. Tekhnol. 21, 147 (1987). 
7. Nepomniaschy E. A.: Teor. Osn. Khim. Tekhnol. 7,754 (1973). 
8. Kudrna V., Sysova M., Fort I.: Collect. Czech. Chern. Commun. 51, 1910 (1986). 
9. Kuni F. M.: Statisticheskaya jizika i termodynamika. Moscow, Nauka 1981. 

10. Bogdanov S. R., Protodiakonov I. 0., Razmolodin L. P.: Zh. Prikl. Khim. 1983, 833. 
11. Steidl H.: Collect. Czech. Chern. Commun. 33, 2192 (1968). 
12. Das P. K., Kumar R., Ramkrishna D.: Chern. Eng. Sci. 42, 213 (1987). 
13. Nepomniaschy E. A.: Teor. Osn. Khim. Tekhnol. 12, 576 (1978). 
14. Fan L. T., Shin S. H.: Chern. Eng. Sci. 34, 811 (1978). 
15. King R. P.: Chern. Eng. Sci. 23, 1035 (1968). 
16. King. R. P.: Chern. Eng. Sci. 26,729 (1971). 
17. King. R. P.: Chern. Eng. Commun. 1, 221 (1974). 
18. Kudrna V.: Collect. Czech. Chern. Commun. 44, 1094 (1979). 
19. Aris R., Amundson N. R.: Chern. Eng. Sci. 9, 250 (1958). 
20. Pell T. M., Aris R.: Chern. Eng. Fundam. 8, 339 (1969). 
21. Pell T. M., Aris R.: Chern. Eng. Fundam. 9, 15 (1972). 
22. Ligon J. R., Amundson N. R.: Chern. Eng. Sci. 36, 635 (1981). 
23. Ligon J. R., Amundson N. R.: Chern. Eng. Sci. 36, 661 (1981). 
24. Protodiakonov I. 0., Bogdanov S. R.: Statisticheskaya teoriya yavlenii perenosa v processakh 

khimicheskoi tekhnologii. Khimiya, Leningrad 1983. 

Collection Czechoslovak Chern. Commun. (Vol. 53) (1988) 



Stochastic Diffusion Processes 1197 

25. Seinfeld J. H., Lapidus L.: Mathematical Methods in Chemical Engineering, Vol. 43. Prentice
-Hall, Englewood Cliffs 1"974. 

26. Slattery J. C.: Momentum, Ellergy and Mass Transfer in Continua. Mc Graw-HiII, New York 
1972. 

27. Bird R. B., Stewart W. E., Lightfoot E. N.: Transport Phenomena (Czech translation). 
Academia, Prague 1968. 

28. Ito K., McKean H. P.: Diffusion Processes and Their Sample Paths (Russian translation). Mir, 
Moscow 1968. 

29. Hinze J. 0.: Turbulence. An Introduction to Its Mechanism and Theory (Russian translation). 
Gosizdat. fiz.-mat. lit., Moscow 1963. 

30. Loeve M.: Probability Theory (Russian translation). Izd. inostr. lit., Moscow 1962. 
31. Wen C. Y., Fan L. T.: Models for Flow Systems and Chemical Reactors. Dekker, New York 

1975. 

32. Kudrna V., Foit I., Hudcova V., Vlcek J., Skiivanek J., Krejcik J.: Int. Symp. on Mixing. 
Mons, Belgium, 21-24 February 1978; paper Bl-1. 

33. Lacey P. M.: J. Appl. Chern. 4, 257 (1954). 
34. Hogg R., Cahn D. S., Healy T. W., Fuerstenau D. W.: Chern. Eng. Sci. 21, 1025 (1966). 
35. Kudrna V., Rochowiecki A.: Collect. Czech. Chern. Commun. 53, 771 (1988). 
36. Rochowiecki A.: Bulk Solids Hand!. I, 501 (1981). 
37. Klimontovich Yu. L.: Statisticheskaya/izika. Nauka, Moscow 1982. 
38. Feller W.: An Introduction to Probability Theory and Its Applications II (Russian translation). 

Mir, Moscow 1967. 
39. Carlsaw H. S., Jaeger J. C.: Conduction of Heat in Solids (Russian translation). Nauka, 

Moscow 1964. 
40. Raitchenko A. I.: Matematicheskaya teoriya diffuzii v prilozheniakh. Naukova dumka, Kiev 

1981. 

Translated by V. Stanek. 

Collection Czechoslovak (;hem. Cammun. (Vol. 53) (1988) 




